jueves, 11 de septiembre de 2008

Tarea para el 12 de Septiembre

1.- Calcular el gradiente de la función


a) f (x,y) = 4x2 – 3xy + y2


f’ x (x,y) = 8x – 3y + 0 i

f ’y (x,y) = 0 – 3x + 2y j


Vf(x, y) = (8x-3y) i + (-3x + 2y) j


b) f(x,y,z) = x-y ÷ x+z


f’x(x,y,z)


= (x+z)(1) – (x-y)(1) ÷ (x+z)2

= z+y / (x+z)2 i


f’y(x,y,z)


= - (x+z) (d/dx y) – (y) (d/dx x+z) ÷ (x+z)2

= - (x+z) (1) – y (0) ÷ (x+z)2

= - x+z ÷ (x+z)2

= - 1 / x+z j


f’z(x,y,z)


= (x+z) (d/dx x – y) – (x – y) (d/dx x+z) ÷ (x+z)2

= x+2 (0) – (x – y) (1) ÷ (x+z)2

= - x+y / (x+z)2 k


Vf(x,y,z) = [z+y/(x+z)2] i + [- 1/x+z ] j [- x+y/ (x+z)2] k



2.- Calcular la divergencia y el rotacional de campo vectorial F

a) F(x, y,z) = 6x2 i – xy2 j



div F= V.F = M + N +R


div F = 12x – x2y



rot = V x F =


i = + (-x2y)(0) – (xy2)(0) = 0

j = - (12x)(0) – (6x2)(0) = 0

k = + (12x)(-xy2) – (6x2) (-x2y) = (-12x2y2) – (-6x3-2y) = -12x2y2 + 6x32y


rot = (0,0, -12x2y2 + 6x32y)


b) F(x,y,z) = senx i + cosy j + z2


div F = V.F = cosx (1) – seny (1) +2z

div F = cosx – seny +2z


rot = V x F =



i = + (-seny)(z2) – (cosy) (2z) = + (-senyz2 – cosy2z) = -senyz2 – cosy2z

j = - (cosx)(z2) – (senx)(2z)= - (cosxz2 – senx2z) = -cosxz2 + senx2z

k = + (cosx)(cosy) – (senx)(-seny) = + (cosxcosy + senxseny) = +cosxcosy + senxseny


rot = -senyz2 – cosy2z i -cosxz2 + senx2z j +cosxcosy + senxseny k



c) F(x,y,z) = exseny i – excosx j En el punto (0,0,3)


divF = exseny – 0

divF = exseny



rot= V x F =



i = + (0)(0) – (-excosx)(0) = 0

j = - (exseny)(0) – (exseny)(0) = 0

k = + (exseny)(-excosx) –(exseny)(0) = +(-exseny excosx) = -e0sen0 e0cos0= -(1)(0)(1)(1)


rot = 0 i + 0 j + 0 k



No hay comentarios: