1.- Calcular el gradiente de la función
a) f (x,y) = 4x2 – 3xy + y2
f’ x (x,y) = 8x – 3y + 0 i
f ’y (x,y) = 0 – 3x + 2y j
Vf(x, y) = (8x-3y) i + (-3x + 2y) j
b) f(x,y,z) = x-y ÷ x+z
f’x(x,y,z)
= (x+z)(1) – (x-y)(1) ÷ (x+z)2
= z+y / (x+z)2 i
f’y(x,y,z)
= - (x+z) (d/dx y) – (y) (d/dx x+z) ÷ (x+z)2
= - (x+z) (1) – y (0) ÷ (x+z)2
= - x+z ÷ (x+z)2
= - 1 / x+z j
f’z(x,y,z)
= (x+z) (d/dx x – y) – (x – y) (d/dx x+z) ÷ (x+z)2
= x+2 (0) – (x – y) (1) ÷ (x+z)2
= - x+y / (x+z)2 k
Vf(x,y,z) = [z+y/(x+z)2] i + [- 1/x+z ] j [- x+y/ (x+z)2] k
2.- Calcular la divergencia y el rotacional de campo vectorial F
a) F(x, y,z) = 6x2 i – xy2 j
div F= V.F = M +
N +
R
div F = 12x – x2y
rot = V x F =
i = + (-x2y)(0) – (xy2)(0) = 0
j = - (12x)(0) – (6x2)(0) = 0
k = + (12x)(-xy2) – (6x2) (-x2y) = (-12x2y2) – (-6x3-2y) = -12x2y2 + 6x32y
rot = (0,0, -12x2y2 + 6x32y)
b) F(x,y,z) = senx i + cosy j + z2
div F = V.F = cosx (1) – seny (1) +2z
div F = cosx – seny +2z
rot = V x F =
i = + (-seny)(z2) – (cosy) (2z) = + (-senyz2 – cosy2z) = -senyz2 – cosy2z
j = - (cosx)(z2) – (senx)(2z)= - (cosxz2 – senx2z) = -cosxz2 + senx2z
k = + (cosx)(cosy) – (senx)(-seny) = + (cosxcosy + senxseny) = +cosxcosy + senxseny
rot = -senyz2 – cosy2z i -cosxz2 + senx2z j +cosxcosy + senxseny k
c) F(x,y,z) = exseny i – excosx j En el punto (0,0,3)
divF = exseny – 0
divF = exseny
i = + (0)(0) – (-excosx)(0) = 0
j = - (exseny)(0) – (exseny)(0) = 0
k = + (exseny)(-excosx) –(exseny)(0) = +(-exseny excosx) = -e0sen0 e0cos0= -(1)(0)(1)(1)
rot = 0 i + 0 j + 0 k
No hay comentarios:
Publicar un comentario